移动哨兵视频监控系统

移动式监控系统先行品牌

+86-18529542340

资讯中心
Information Center
当前位置:   资讯中心   科技前沿

人工智能在安防领域的技术应用现状及未来发展趋势

信息来源:移动哨兵 2019-11-18

伴随着AI技术的深化应用,中国智能安防视频监控技术和系统应用的发展正越来越成熟。本文将主要介绍人工智能在安防领域的技术应用现状,同时也对智能安防产业未来的应用及技术趋势提出一些思考方向!

人工智能在安防领域的技术应用现状及未来发展趋势

人工智能在安防领域的技术应用现状

现阶段人工智能的技术应用现状如何?首先来看下视频结构化描述的技术进展情况。视频结构化描述有两个核心:图像对象要素的识别和构建对象间的语义关系。

目前很多视频结构化描述基本只做到了第一层即可以实现对图像对象要素内容的识别和标注,且进展已经很成熟,甚至已能够实现在前端摄像机内即可实现结构化描述,比如车辆卡口,能够实现对车牌、车型、车标、车身颜色的信息的识别。不过对于一些更个性化的内容检索,比如车辆年检标志、车内挂饰、纸巾盒等细节的特征识别还有一定的发展空间。另外在非交通卡口像治安卡口这一类非标场景下的目标识别检测,由于安装角度、光照条件等因素的影响,视频机构化描述还有进一步发展空间。

第二层次构建起对象间的语义关系至关重要,以闯红灯的场景为例,闯红灯语义本身有几个要素,包括信号灯、车辆、交通标志、标线等,识别这些要素是视频结构化描述的第一步。第二步是把识别对象之间形成一定的语义关系,比如车行状态、信号灯状态、人和车之间的位置关系等等,把这些关系建立起来之后可以形成一个关系规则,它的优势在于我们可以根据实际情况灵活调整规则来拓展不同电子警察模式识别的能力。通过构建语义关系来实现一些复杂的规则,这也是视频结构化描述的初心,也就是构建不止是让人理解的描述,更要构建让机器可理解的描述。

要实现对象的识别和构建起对象间的语义关系,需要一些专业的技术支持:一个是目标检测和识别,其次是知识图谱,目标检测识别出来之后,需要构建语义关系构成一个知识图谱,这两个方面的技术是实现视频结构化描述的关键。

在人脸识别的技术应用现状方面,1:1的人脸识别在国内的应用已经非常广泛,但它也仍然存在一些问题,比如非实体线下的场景即网络场景下需要加强活体人脸检测做人脸防伪,在金融等高安全级别的人脸识别的场景下也需要进一步巩固人脸识别的安全性和可靠性。1:N的人脸识别技术进展也相当迅猛,目前在国内已有一些项目落地。

行人检索的研究也取得了不错的进展,但是这些成绩都是基于小规模的数据,不同于车辆识别,车辆天然和车牌、车主身份证这些数据信息绑定在一起,其数据标注较为容易,但行人检索的数据标注成本相对会高出很多,所以导致现阶段行人检索目前的实用性和可用性方面仍没有车辆检索的应用成熟。

安防人工智能应用发展趋势

伴随着AI的深化应用及应用需求的升级,接下来,智能安防产业的发展将呈现这几大发展趋势:

一是后视频监控时代将迎来物联网防控。除了视频数据之外,像Wi-Fi、RFID、电子车牌等不同维度的物联网信息都可以关联到一起,通过丰富的数据类型,来共同碰撞出更有价值的信息。

二是数据融合的能力更强,分析应用更智能;三是随着5G的到来,不同的应用场景里面融合通信的程度将会加强;第四个就是三维图像建模,通过将视频监控画面和三维图像进行融合,实现城市大场景的虚实融合,这种应用或将成为未来指挥中心可视化指挥调度的一个新的方向。

还有一个趋势是移动视频监控信息采集,当前阶段的视频监控更多是采用固定点位进行视频数据的采集,随着车辆移动监控以及可穿戴式监控设备的出现,未来移动监控的应用也将成为一大趋势方向。

返回列表
相关新闻
related news
在线留言
客服QQ
18529542340
客服微信
欢迎在线留言